FS62WSS

Привариваемый оптоволоконный тензодатчик (арамидный или бронированный кабель)

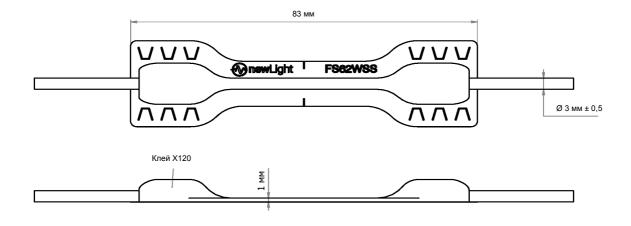
Особенности

- Монтаж с помощью точечной сварки
- Прочная конструкция
- Возможность настройки длины волны, длины кабеля и типа разъема

Описание

Привариваемый тензодатчик – это датчик на основе волоконной брэгговской решетки (FBG), разработанный для простого точечного приваривания к металлическим поверхностям с помощью маломощного сварочного аппарата. Благодаря прочной и устойчивой конструкции, этот датчик в исполнении с прочным корпусом может использоваться в суровых условиях эксплуатации, которые наблюдаются на многих производственных и промысловых объектах.

Устройство FS62WSS основано на технологии **newLight®**, разработанной компанией HBM FiberSensing для объединения специальных преимуществ решетки FBG и преодоления технических компромиссов, которые существовали до сих пор. В датчиках newLight® используются **высокопрочные волоконные покрытия** и **различные технологии изготовления решетки FBG**, которые обеспечивают расширенный диапазон измерения деформации, повышенную усталостную прочность и более высокую точность измерений. **Волокно с малыми потерями на изгибе, используемое в телекоммуникациях**, открывает возможности для инновационной разработки датчиков, а также обеспечивает прямое использование датчиков с мультиплексированными каналами посредством одного и того же волоконного кабеля – даже на расстоянии нескольких километров. Устройства, изготовленные по этой технологии, являются **пассивными**, **самокалибрующимися** и **совместимыми с большинством опросных устройств.**


Это устройство можно использовать **в сочетании** с другими тензометрическими датчиками и датчиками температуры от HBM FiberSensing с помощью подходящих кабелей и конфигураторов **K-FS76ARD** и **K-FS76ARM**.

Преимущества и области применения

- Проведение измерений возможно сразу после монтажа
- Возможна специальная настройка для измерения деформации различных степеней и различных рабочих температур
- Подходит для суровых условий окружающей среды, например, во время мониторинга целостности крупных конструкций для инженерно-строительных объектов, трубопроводов, корпусов судна, а также для применения в морских условиях

Технология волоконной брэгговской решетки

- Сравнительное измерение образцов
- Нечувствительность к электромагнитным/радиочастотным помехам
- Пассивный датчик (может использоваться во взрывоопасных зонах)
- Естественная способность к мультиплексированию, уменьшающая требования к кабельной системе
- Возможны большие расстояния между датчиком и опросным устройством
- Возможность комбинирования с другими датчиками измеряемых величин

Технические характеристики

Датчик				
k-фактор (чувствительность) ¹⁾	н/п [пм/(мкм/м)]	0,76 ± 0,03 ([1,2])		
Разрешение ²⁾	мкм/м	0,5		
Диапазон измерений	мкм/м [%]	±5000 [0,5]		
Измерительная база	ММ	40		
Температура эксплуатации и хранения	°C	От -20 до +80 ³⁾		
Влажность при эксплуатации ⁴⁾ и хранении	%	≤ 100, < 95		
Поперечная чувствительность к перепаду температур ⁵⁾	(мкм/м)/°С	6,6 ± 1		
Радиус изгиба датчика ⁶⁾	MM	> 400		
Метод монтажа	н/п	Точечная сварка ⁷⁾		
Размеры ⁸⁾	ММ	$83 \pm 0.5 \times 23 \pm 0.5 \times 6 \pm 0.5$		
Macca ⁹⁾	Г	Ø 3 мм, арамидный: 19; Ø 3 мм, бронированный: 63		
Ocupania in Mazoniazia	н/п	Нержавеющая сталь; силикон; клей X120, ormocer®		
Основные материалы		(органически модифицированная керамика)		
Длины волн Брэгга	нм	От 1500 до 1600 (±0,5)		
Диаметр сердечника волокна, оболочки и покрытия	МКМ	8/125/195		
Ширина спектра по половине от макс. амплитуды,				
коэфф-т отражения и подавление боковых лепестков	н/п	> 0,2 нм, 20 ± 6 %, > 7 дБ		
Входы/выходы				
	н/п	Арамидный, Ø 3 мм (Хайтрел, Kevlar® и полиэтилен)		
Тип кабеля		или бронированный, Ø 3 мм (Хайтрел, спираль из		
тип каоеля		нержавеющей стали, Kevlar®, сетка из нержавеющей		
		стали и полиэтилен)		
Радиус изгиба кабеля	ММ	> 5		
Длина кабеля ¹⁰⁾	М	От 0 до 20 ± 0,05		
Разъемы	н/п	FC/APC, SC/APC или NC (без разъемов)		

Информация для заказа

•	раиваемый компонент 62WSS - 1 - 2 3 - 4 - 5 6	Стандартный компонент ¹¹⁾
Вари	анты	1-FS62WSS-ARM/1510
1	ARD – арамидный кабель; ARM – бронированный кабель	1-FS62WSS-ARM/1520
2	NC – без разъема; FC – FC/APC; SC – SC/APC	1-FS62WSS-ARM/1530
3	0,5 м < длина кабеля < 20 м с шагом 0,5 м	1-FS62WSS-ARM/1540
4	1510 нм ≤ длина волны ¹²⁾ ≤ 1590 нм с шагом 10 нм	1-FS62WSS-ARM/1550
5	0,5 м < длина кабеля < 20 м с шагом 0,5 м	1-FS62WSS-ARM/1560
6	NC – без разъема; FC – FC/APC; SC – SC/APC	1-FS62WSS-ARM/1570
		1-FS62WSS-ARM/1580
		1-FS62WSS-ARM/1590

- 1) Типовое значение. Указано для волоконной брэгговской решетки с длиной волны 1550 нм.
- ²⁾ Для разрешения 0,5 пм при измерении длин волн, как указано для опросного устройства FS22SI.
- 3) При температуре выше 60 °C значения ползучести могут превышать 0,5 %. Дополнительную информацию см. в технических примечаниях.
- 4) Для длительной эксплуатации рекомендуется дополнительная защита.
- 5) Поперечная чувствительность к перепаду температур (TCS) это тепловая деформация, вызванная изменением температуры на 1 °C.
- 6) Изменение длины волны Брэгга до ±1 нм при максимально допустимом радиусе изгиба датчика.
- ⁷⁾ Требуется точечный сварочный аппарат малой мощности, от 20 до 70 В, от 26 до 80 Вт. Подходит модель c30s от Heller GmbH или аналогичная.
- 8) Толщина привариваемой пластины: 100 мкм.
- 9) С использованием кабеля длиной 2 м с каждой стороны и без разъемов.
- (Ø 8 × 200 мм). Волокно удлиноть в контактном центре компании НВМ FiberSensing.
- 11) Стандартные элементы соответствуют конфигурации: бронированный кабель длиной 2 м, с каждой стороны кабеля расположены разъемы FC/APC. Длина волны: от 1510 до 1590 с шагом 10 нм.
- 12) Другие варианты длины волны можно запросить в контактном центре компании HBM FiberSensing.

В документ могут быть внесены изменения. Описания всех изделий приводятся только для информации. Эти описания не следует рассматривать как гарантию качества или долговечности. HBM FiberSensing S. A. Rua Vasconcelos Costa 277 • 4470-640 Maia • Portugal (Португалия)

Тел.: +351229613010 • Эл. почта: fibersensing@hbm.com • www.hbm.com/fs

